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• Background 
– Objective: obtain models for unsteady aerodynamics of fixed-wing MAVs 

(e.g. incorporating dynamic stall, vortex shedding) 
– Technical approach: systematic models using approximate balanced 

truncation (balanced POD); empirical, phenomenological models that 
capture correct bifurcation behavior 

– Contributors: Steve Brunton, Zhanhua Ma (Princeton); T. Colonius 
(Caltech) 

• Technical progress to date 
– Obtained phenomenological models that capture unsteady behavior over a 

large range of angle of attack 
– Theoretical framework for balanced POD about periodic orbits (e.g. 

vortex shedding) 
– Current work: include forcing terms to avoid the need to tune initial 

conditions 
• Impact:  Models will enable control design for robust performance of MAVs 

during agile maneuvers, severe gusts 
• Future plans: models for dynamically pitching/heaving airfoils 
• Collaboration opportunities: Michael Ol, AFRL/VAAA 

 
• Objectives 

– Obtain models for unsteady aerodynamics of fixed-wing MAVs, for robust 
control during rapid maneuvers or severe gusts 

• Previous work 
– Vast majority of previous models are quasi-steady (e.g. CL(α)) 
– Linear models of dynamic stall (Goman 1994, Magill 2003) 
– Nonlinear models for unsteady aerodynamics on a rolling delta wing 

(Myatt 1996, Allwine 2004) 
• Two modeling approaches pursued here 

– Systematic: approximate balanced truncation (balanced POD) for model 
reduction of Navier-Stokes, for pitching and/or heaving wings 

– Phenomenological: simple models obtained without using Navier-Stokes 
• Collaborations / Acknowledgments 

– Steve Brunton, Zhanhua Ma (PU grad students) 
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– Caltech MURI team, especially Tim Colonius, Sam Taira 
 
Coherent structures about a rapidly pitched airfoil 
 

• Direct Numerical Simulation of flow over a flat plate 
– Immersed boundary solver (Colonius & Taira 2006, 2007) 
– Compute unsteady loads at fixed angle-of-attack, and pitching/heaving 
– Lagrangian Coherent Structures (LCS) identify boundaries of separation 

bubbles, leading-edge vortices: important features to model 
 
Coherent structures about a stationary airfoil 
 

• Lagrangian Coherent Structures determine boundaries between qualitatively 
different regions (e.g., separation bubble boundary) 

– LCS are ridges of Finite-Time Lyapunov Exponent field 
 
Coherent structures about a stationary airfoil 
 

• Lagrangian Coherent Structures determine boundaries between qualitatively 
different regions (e.g., separation bubble boundary) 

– LCS are ridges of Finite-Time Lyapunov Exponent field 
 
 
Nonlinear models valid 
near the bifurcation point 
 

• Phenomenological model 
– Numerical continuation [Ahuja and Rowley, 2007] reveals a Hopf 

bifurcation as angle of attack increases 
– Construct a nonlinear model as the normal form of the Hopf bifurcation: 
– By construction, model captures correct nonlinear behavior.  Calibrate 

constants against simulation data. 
 
Nonlinear models valid 
near the bifurcation point 

• Model comparison with DNS (Re = 100) 
 
Systematic models: Balanced POD 

• Model reduction for very large systems 
– POD has limitations (low-energy features often dynamically important) 
– Balanced truncation: good error bounds for linear systems, but not 

computationally tractable for very large system dimension (e.g. fluids) 
– Solution: empirical Gramians [Lall et al 1999], algorithm for computing 

balancing transformation without computing the Gramians themselves 
[Rowley 2005] 

– Method involves impulse responses of linearized and adjoint systems 



Systematic models: Balanced POD 
• Balanced truncation produces excellent models, but is computationally 

intensive for very large systems 
– Cannot even store the whole Gramians or balancing transformation: 

square matrices, dim > 105 
– Interested only in the leading columns/rows of the balancing 

transformation and its inverse: 
– Columns of Φ1 are balancing modes; columns of Ψ1 are adjoint modes 

• Compute these directly from snapshots of the linearized and adjoint systems 
 
Balanced POD for periodic systems 

• Periodic orbits often arise in fluids 
– Periodic vortex shedding 
– Flow control: open-loop forcing at a single frequency 

• Standard balanced POD works for linearizations about an equilibrium 
• Desire reduced-order models valid near a periodic orbit 

– Main idea is to lift the time-periodic system to a time-invariant system 
with many more inputs and outputs, then apply standard BPOD procedure 

• Subtleties: whether to use several different output projections (a 
different projection at each step around the periodic orbit) or the 
same projection at each step 

 
Impact 

• Air Force impact 
– Unsteady effects unavoidable for Micro Air Vehicles 

• Agile maneuvers: time scales of vehicle dynamics commensurate 
with time scales of flow structures 

– Quasi-steady models may drastically underestimate/overestimate 
lift/drag/moments 

– Disturbances (gusts) typically large; require good models for robust 
control 

• Direct impacts 
– Improved aerodynamic models for robust control of fixed-wing MAVs 

• Indirect impacts 
– Development of systematic reduced-order modeling techniques useful for 

other control problems (e.g. flow control, design optimization, flapping-
wing flight) 

 
Future Plans 

• Phenomenological models 
– Introduce coupling terms to avoid the need to tune initial conditions for a 

particular angle-of-attack 
– Test models against simulations with pitch/plunge, improve models as 

necessary 
– Use more realistic airfoil (SD7003) 

• Systematic models 



– Implement Balanced POD for models linearized about an equilibrium; 
linearized about a periodic orbit; scheduled linear models; and full 
nonlinear models 

• 3-dimensional effects 
– Characterize differences between 2d 
– Adapt phenomenological models as needed. 

• Comparison with experiments 
– Michael Ol plunging airfoil experiment? 

 
Collaboration Opportunities 

• Michael Ol (AFRL/VA) 
– Experiments on plunging SD7003 airfoil 
– Leading AIAA Low-Reynolds-number discussion group 

• Miguel Visbal (AFRL/VA) 
– High-fidelity numerical simulations of laminar separation bubbles 

• Johnny Evers (AFRL/MN) 
– Autonomous MAV flight; closed-loop control 

 
 
 




